Number operators in a general quon algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 274737
(http://iopscience.iop.org/0305-4470/27/14/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:29

Please note that terms and conditions apply.

Number operators in a general quon algebra

Stjepan Meljanac and Ante Perica
Rudjer Bošković Institute, Bijenička c.54, 41001 Zagreb, Croatia

Received 22 March 1994

Abstract

The existence of the number operators N_{k} in a general quon algebra is proved and a general construction of N_{k} is presented. A new general simple structure of N_{k} is proved when $\left|q_{i j}\right|<1, \forall i, j \in S$. General recurrent relations for the corresponding coefficients are constructed and solved in special cases. These solutions are discussed and a conjecture for a general solution is proposed. Cases in which some or all $\left|q_{i j}\right|=1$ are discussed.

1. Introduction

Quonic intermediate statistics [1,2], interpolating between Bose and Fermi statistics, are examples of infinite statistics in which any representation of the symmetric group can occur. This offers a possibility for a small violation of the Pauli exclusion principle, at least in nonrelativistic theory [2,3]. A more general quon algebra with infinite statistics, interpolating between Bose, Fermi, para-Bose, para-Fermi and anyonic statistics was proposed and analysed in [4]. The deformation parameter is not global but is an arbitrary function of distance (momentum). In $2+1$ dimensions, anyons represent the limiting case of quon particles [5]. In $3+1$ dimensions, no generalized statistics is possible from dynamics in curved spacetime for a global deformation parameter [6]. However, generalized statistics is possible, at least in principle, for a local deformation parameter [7]. It seems interesting to further analyse a general quon algebra and its consequences, particularly in lower dimensions, for example, in connection with anyons in $2+1$ dimensions.

In this paper we show that number operators exist in the general quon algebra [4], and present a general construction of number operators when $\left|q_{i j}\right|<1$. We prove the general simple structure of the number operator [4] and construct recurrent relations for the corresponding coefficients in all orders. Solutions of these equations are discussed (up to third order) and a general solution is conjectured.

2. Existence of number operators

Let us start with the general associative quon algebra [4]

$$
\begin{equation*}
a_{i} a_{j}^{\dagger}-q_{i j} a_{j}^{\dagger} a_{i}=\delta_{i j} \quad \forall i, j \in S \quad q_{i j}^{*}=q_{j i} \tag{1}
\end{equation*}
$$

where a_{i}^{\dagger} is the Hermitian conjugate of a_{i} (and vice versa). The indices i, j belong to some lattice S. No commutation relation between a_{i} and a_{j} exists if $\left|q_{i j}\right| \neq 1$ for $\forall i, j \in S$ [1, 2, 4]. The Fock-like space of all states is positive definite [4, 8]. In order to construct a

Fock-like representation of the general quon algebra, we assume that the unique vacuum $|0\rangle$ (and its dual $\langle 0|$) exists. The vacuum conditions are

$$
\begin{equation*}
\langle 0| a_{i}^{\dagger}=0 \quad a_{i}|0\rangle=0 \quad \forall i \in S \quad\langle 0 \mid 0\rangle=1 \tag{2}
\end{equation*}
$$

By definition, the operators a_{i}^{\dagger} acting on the vacuum create one-particle states $a_{i}^{\dagger}|0\rangle$. Normalizing these one-particle states and using equation (1), one obtains (for $n, m \in N$)

$$
\begin{equation*}
\langle 0|\left(a_{i}\right)^{n}\left(a_{j}^{\dagger}\right)^{m}|0\rangle=[n]_{q_{u}} \backslash \delta_{m m} \delta_{i j} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& {[n]!=[n] \cdot[n-1] \cdots[1]} \\
& {[n]_{q_{i \prime}}=\frac{\left(q_{i i}\right)^{n}-1}{q_{i i}-1}} \tag{4}
\end{align*}
$$

We point out that the general matrix element

$$
\begin{equation*}
\mathcal{A}_{i_{1} \cdots i_{n} ; j_{1} \cdots j_{m}}=\left\{0\left|a_{i_{n}} \cdots a_{i_{1}} a_{j_{1}}^{\dagger} \cdots a_{j_{m}}^{\dagger}\right| 0\right\rangle \tag{5}
\end{equation*}
$$

vanishes unless $n=m$ and the indices $\left(i_{1} \cdots i_{n}\right)$ and $\left(j_{1} \cdots j_{m}\right)$ are equal up to permutation. The matrix element $\mathcal{A}_{\pi: \sigma}$, where π and σ are two permutations of $i_{1} \ldots i_{n}$, where i_{j} are mutually different, is given in [4].

Owing to equations (1) and (2) and to the orthogonality conditions for these states, the nparticle state is any state of the form $a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle$. Hence, the total number operator in the Fock space exists. In the same way, equations (1) and (2) and the orthogonality conditions for these states allow us to define the number operator N_{k} counting the a_{k}^{\dagger} operators in any n-particle state of the form $a_{i_{1}}^{\dagger} a_{t_{2}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle, i_{1}, i_{2}, \cdots i_{n} \in S$, in the Fock space. Namely,

$$
\begin{equation*}
N_{k}\left(a_{i_{1}}^{\dagger} a_{i_{2}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle\right)=\sum_{\alpha=1}^{n} \delta_{k i_{\alpha}}\left(a_{i_{1}}^{\dagger} \cdots a_{i_{\alpha}}^{\dagger} \cdots a_{i_{n}}^{\dagger}|0\rangle\right) \tag{6}
\end{equation*}
$$

Hence, the number operator $N_{k}, k \in S$, exists and is a Hermitian operator by definition. We note that the norm of any linear combination of n-particle states is positive definite when $\left|q_{i j}\right|<1, \forall i, j \in S[4,8]$.

3. Construction of the number operator

From equation (6) it follows that

$$
\begin{equation*}
\left[N_{k}, a_{l}\right]=-\delta_{k l} a_{k} \quad \forall k, l \in S \quad\left[N_{k}, a_{l}^{\dagger}\right]=\delta_{k l} a_{k}^{\dagger} \tag{7}
\end{equation*}
$$

When $q_{i j}=+1$ (or -1), $\forall i, j \in S$, i.e. in the Bose (or Fermi) case, the number operator N_{k} is given by $N_{k}=a_{k}^{\dagger} a_{k}$. Hence we start our construction of the operator N_{k} when $\left|q_{i j}\right|<1$, $\forall i, j \in S$, with the term $a_{k}^{\dagger} a_{k}$. The general form of N_{k} is given by a series expansion in the creation and annihilation operators,

$$
\begin{equation*}
N_{k}=c_{k} a_{k}^{\dagger} a_{k}+\sum_{n=1}^{\infty} \sum_{\left(i_{1} \cdots i_{n}\right)}\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger} Y_{k i_{1} \cdots i_{n}} \tag{8}
\end{equation*}
$$

where

$$
\begin{align*}
& X_{k i_{1} \cdots i_{n}}=\sum_{\pi \in S_{n+1} / S t} x_{\pi\left(k i_{1} \cdots i_{n}\right)} \pi \cdot\left(a_{k} a_{i_{1}} \cdots a_{i_{n}}\right) \\
& Y_{k i_{1} \cdots i_{n}}=\sum_{\sigma \in S_{n+l} / S t} y_{\sigma\left(k i_{1} \cdots i_{n}\right)} \sigma \cdot\left(a_{k} a_{i_{1}} \cdots a_{i_{n}}\right) \tag{9}
\end{align*}
$$

where we define

$$
\begin{aligned}
& \sigma \cdot\left(a_{i_{1}} a_{i_{2}} \cdots a_{l_{n+1}}\right) \doteq a_{i_{\sigma(1)}} a_{i_{\sigma(2)}} \cdots a_{i_{\sigma(n+1)}} \\
& \sigma \cdot\left(i_{1} i_{2} \cdots i_{n+1}\right) \doteq i_{\sigma(1)} i_{\sigma(2)} \cdots i_{\sigma(n+1)}
\end{aligned}
$$

The summation in equation (9) has been performed over all different permutations of indices $k i_{1} \cdots i_{n}$. Note that, generally, there are $\frac{(n+1)!}{s_{1}!\cdots s_{a}!},\left(\sum_{\alpha=1}^{a} s_{\alpha}=n+1\right)$ such permutations, where $s_{1} \cdots s_{a}$ are multiplicities of the indices appearing in the sequence $k i_{1} \cdots i_{n} . S_{n+1}$ denotes the symmetric group of ($n+1$) elements and x_{π} and y_{σ} are complex coefficients.

Note that the particular terms of the form $X^{\dagger} \cdot Y$ in the expansion for N_{k} are not necessarily Hermitian operators, but for any fixed $n \in N$ their sum corresponding to n is a Hermitian operator.

Inserting N_{k}, equation (8), into $\left[N_{k}, a_{l}\right]=-\delta_{k l} a_{k}$ and using equation (1), we obtain

$$
\begin{array}{r}
c_{k}\left(a_{k}^{\dagger} a_{k} a_{l}-q_{l k} a_{k}^{\dagger} a_{l} a_{k}\right)+\sum_{n=1}^{\infty} \sum_{\left(i_{1} \cdots i_{n}\right)}\left[\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger} Y_{k i_{1} \cdots i_{n}} a_{l}\right. \\
\left.-a_{l}\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger} Y_{k i_{1} \cdots i_{n}}\right]=\left(c_{k}-1\right) a_{k} \delta_{k l} . \tag{10}
\end{array}
$$

All terms in equation (10) are of the type $a_{i_{1}}^{\dagger} \cdots a_{i_{n}}^{\dagger} a_{j_{1}} \cdots a_{j_{n+1}}, n \in N$. The main idea is to collect the terms of the same type and equate them to zero. Using the fact that for $\left|q_{i j}\right|<1, \forall i, j \in S$, the set of all monomials ($a_{i_{n}}^{\dagger} \cdots a_{i_{1}}^{\dagger} a_{j_{1}} \cdots a_{j_{n+1}}$), $i_{\alpha}, j_{\beta} \in S$, is linearly independent $[1,2,4]$, all the corresponding coefficients in equation (10) should vanish. In this way we end up with a set of linear equations for the corresponding coefficients.

To proceed in this way, we first write

$$
\begin{equation*}
a_{l}\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger}={\widehat{a_{l}}\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger}+q_{l k} q_{l i_{1}} \cdots q_{l_{n}}\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger} a_{l}} \tag{11}
\end{equation*}
$$

where the first term on the RHS denotes the sum of all possible contractions and is of the type $\left(a^{\dagger}\right)^{n}$, whereas the second term on the RHS is of the type $\left(a^{\dagger}\right)^{n+1} a$. For example,

$$
\begin{equation*}
\left.\widehat{a_{l}\left(a_{i_{1}}\right.} \cdots a_{l_{n}}^{\dagger}\right)=\sum_{\alpha=1}^{n} q_{l i_{1}} \cdots q_{l_{i_{\alpha}-1}} a_{i_{1}}^{\dagger} \cdots \not \alpha_{i_{\alpha}}^{\dagger} \cdots a_{i_{n}}^{\dagger} \delta_{l i_{\alpha}} \tag{12}
\end{equation*}
$$

where a slash denotes the omission of the corresponding creation operator. In the lowest order (terms of type a) we find from (10) that

$$
\begin{equation*}
\left(c_{k}-1\right) a_{k}=0 \quad \Rightarrow c_{k}=1 \quad \forall k \in S \tag{13}
\end{equation*}
$$

and in the next order,

Equation (14) can be decomposed into two relations:

$$
\begin{align*}
& Y_{k i_{1}}=a_{k} a_{i_{1}}-q_{i_{1} k} a_{i_{1}} a_{k} \\
& {\widehat{a l}\left(X_{k i_{1}}\right.}^{\dagger}=a_{k}^{\dagger} \delta_{l_{1}} . \tag{15}
\end{align*}
$$

The solution of the second of equations (15) is

$$
\begin{equation*}
\left(X_{k i_{1}}\right)^{\dagger}=\frac{1}{1-\left|q_{k i_{1}}\right|^{2}}\left(Y_{k i_{1}}\right)^{\dagger} \quad\left|q_{k i_{1}}\right| \neq 1 \tag{16}
\end{equation*}
$$

If $\left|q_{k l}\right|=1$, the associative quon algebra, equation (1), implies the following relation between a_{k} and $a_{l}[4,7]$:

$$
\begin{equation*}
a_{k} a_{l}-q_{l k} a_{l} a_{k}=0 \tag{17}
\end{equation*}
$$

Equation (14) reduces to

$$
\begin{equation*}
\sum_{i_{1}} \widehat{a} l_{l}\left(X_{k i_{1}}\right)^{\dagger} Y_{k i_{1}}=0 \quad Y_{k l}=0 . \tag{18}
\end{equation*}
$$

Hence $\left(X_{k l}\right)^{\dagger} \gamma_{k l}=0$. If $\left|q_{k k}\right|=1$, then $q_{k k}= \pm 1$, and the same argument applies. The successive recurrent relations for the general nth order, which follow from equations (10) and (11), are

$$
\begin{gather*}
\sum_{\left(i_{1}, \cdots i_{n+1}\right)}\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger}\left[Y_{k i_{1} \cdots i_{n}} a_{i_{n+1}}-q_{i_{n+1} k} q_{i_{n+1} i_{1}} \cdots q_{i_{n+1} i_{n}} a_{i_{n+1}} Y_{k i_{1} \cdots i_{n}}\right] \delta_{l_{i_{n+1}}} \\
=\sum_{\left(i_{1} \cdots i_{n+1}\right)} \widehat{a_{l}\left(X_{k i_{1} \cdots i_{n+1}}\right)^{\dagger} Y_{k i_{1} \cdots i_{n+1}} .} \tag{19}
\end{gather*}
$$

From equation (19) we obtain two relations when $\left|q_{i j}\right|<1$, for $\forall i, j \in S$:
$Y_{k i_{1} \cdots i_{n+1}}=Y_{k i_{1} \cdots i_{n}} a_{i_{n+1}}-q_{i_{n+1} k} q_{i_{n+1} i_{1}} \cdots q_{i_{n+1} i_{n}} a_{i_{n+1}} Y_{k i_{1} \cdots i_{n}}$
and

$$
\begin{equation*}
{\widehat{a_{l}}\left(X_{k i 1} \cdots i_{k+1}\right.}^{)^{\dagger}=\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger} \delta_{l i_{n+1}} ~} \tag{21}
\end{equation*}
$$

In order to solve equation (21), we use an important relation which can be easily proved by induction,
where the slashed λ_{l} denotes the omission of the index i_{j}, and the coefficients $d_{j}^{l(k ; n)}$ are given by

$$
\begin{equation*}
d_{j}^{l\left(k, i_{1} \cdots i_{n}\right)}=q_{l i_{n}} \cdots q_{l l_{j+1}}\left(1-\left|q_{l_{t}-1} \cdots q_{l l_{1}} q_{l k}\right|^{2}\right) \tag{23}
\end{equation*}
$$

Using this result and comparing it with equation (21), we can generally write

$$
\begin{equation*}
\left(X_{k i_{1} \cdots i_{n}}\right)^{\dagger}=\sum_{\pi \in S_{n} / S t} c_{k \pi\left(i_{1} \cdots i_{n}\right), k k_{1} \cdots i_{n}}\left[Y_{k \pi\left(i_{1} \cdots i_{n}\right)}\right]^{\dagger} \tag{24}
\end{equation*}
$$

where the summation is over all different permutations of $i_{1}, \cdots i_{n}$.
Hence, the general simple structure of the number operator N_{k} (when $\left|q_{i j}\right|<1$, $\forall i, j \in S$) is
$N_{k}=a_{k}^{\dagger} a_{k}+\sum_{n=1}^{\infty} \sum_{\left(i_{1} \cdots i_{n}\right)} \sum_{\pi \in S_{n} / S t} c_{k \pi\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}} \cdot\left[Y_{k \pi\left(i_{1} \cdots i_{n}\right)}\right]^{\dagger} Y_{k i_{1} \cdots i_{n}}$.
Inserting equation (24) into equation (21) and using equations (22),(23), we obtain

$$
\frac{n!}{s_{1}!\cdots s_{a}!} \quad\left(\sum_{\alpha=1}^{a} s_{\alpha}=n\right)
$$

linear equations for the same number of unknown coefficients $c_{k \pi\left(i_{1} \cdots i_{n}\right), k i_{1} \ldots i_{k}}$. They are

$$
\begin{gather*}
\sum_{j=1}^{n} d_{j}^{l(k, \Lambda(j, l, \pi)(1 \cdots n))} c_{k \Lambda(j, l, \pi)(1 \cdots n) ; k 1 \cdots n}=c_{k \pi(1 \cdots n-1) ; k 1 \cdots(n-1)} \delta_{l n} \\
l=1,2, \cdots n \tag{26}
\end{gather*}
$$

where

$$
\begin{aligned}
& \Lambda(j, l, \pi)=\varepsilon_{j}^{l} \cdot \pi \cdot \eta_{l} \\
& \eta_{l}\left(i_{1}, \cdots i_{n}\right)=\left(i_{1}, \cdots i_{l-1}, i_{l+1} \cdots i_{n}\right)=\left(i_{1}^{\prime}, \cdots i_{n-1}^{\prime}\right) \\
& \varepsilon_{j}^{l} \cdot \pi\left(i_{1}^{\prime}, \cdots i_{n-1}^{\prime}\right)=\left(i_{\pi(1)}^{\prime} \cdots i_{\pi(j-1)}^{\prime} i_{i}^{\prime} i_{\pi(j+1)}^{\prime} \cdots i_{\pi(n-1)}^{\prime}\right)
\end{aligned}
$$

($1,2, \cdots n$ in equation (26) denote abbreviations for $i_{1} \cdots i_{n} \in S$). The coefficients $d_{j}^{l(k ; n)}$ are defined by equation (23).

The following hermiticity relation holds:

$$
\begin{equation*}
c_{k \pi\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}}^{*}=c_{k i_{1} \cdots i_{n}, k \pi\left(i_{1} \cdots i_{n}\right)} . \tag{27}
\end{equation*}
$$

4. Special cases

Let us write equations (26) and the corresponding solutions for $n=1,2,3$ and for $\left|q_{i j}\right|<1$, $\forall i, j \in S$.
(i) Case $n=1$

$$
\begin{align*}
& d_{1} c_{k i_{1}, k i_{1}}=c_{k}=1 \\
& \left(1-\left|q_{k i_{1}}\right|^{2}\right) c_{k i_{1}, k i_{1}}=1 \tag{28}\\
& c_{k i_{1}, k i_{2}}=\frac{1}{1-\left|q_{k i_{1}}\right|^{2}} .
\end{align*}
$$

(ii) Case $n=2$

When $i_{1} \neq i_{2}$, equations (26) are

$$
\begin{align*}
& d_{2}^{2(k, 12)} c_{k 12, k 12}+d_{1}^{2(k, 21)} c_{k 21, k 12}=c_{k 1, k 1} \\
& d_{1}^{1(k, 12)} c_{k 12, k 12}+d_{2}^{1(k, 21)} c_{k 21, k 12}=0 \tag{29}
\end{align*}
$$

where $d_{j}^{l\left(k, i_{1} i_{2}\right)}$ are given by equation (23); they are

$$
\begin{align*}
& d_{1}^{1(k, 12)}=q_{12}\left(1-\left|q_{1 k}\right|^{2}\right) \\
& d_{1}^{2(k, 21)}=q_{21}\left(1-\left|q_{2 k}\right|^{2}\right) \tag{30}\\
& d_{2}^{1(k, 21)}=\left(1-\left|q_{1 k} q_{12}\right|^{2}\right) \\
& d_{2}^{2(k, 12)}=\left(1-\left|q_{2 k} q_{21}\right|^{2}\right) .
\end{align*}
$$

The solution of the equation (29) is

$$
\left.\begin{array}{l}
c_{k i_{1} i_{2}, k i_{1} i_{2}}=\left.\frac{1-\mid q_{i 1} i_{2}}{\Delta_{3}} q_{k i_{1}}\right|^{2} \tag{31}\\
\quad c_{k i_{2} i_{1}, k i_{1} i_{2}}=-\frac{\mathcal{A}_{k i_{1} i_{2}, k i_{1} i_{2}}^{-1}=\mathcal{A}_{k, i d ; k, i d}^{-1}\left(k, i_{1}, i_{2}\right)}{q_{i_{1} i_{2}}\left(1-\left|q_{k i_{1}}\right|^{2}\right)} \\
\Delta_{3}
\end{array}=\mathcal{A}_{k i_{1} i_{2}, k i_{2} i_{1}}^{-1}=\mathcal{A}_{k, i d ; k, \pi(1 \leftrightarrow 2)}^{-1}\left(k, i_{1}, i_{2}\right)\right) .
$$

where

$$
\begin{equation*}
\Delta_{3}=\left(1-\left|q_{i_{1} i_{2}}\right|^{2}\right)\left(1-\left|q_{k i_{1}}\right|^{2}\right)\left(1-\left|q_{1 i_{2}} q_{k i_{1}} q_{k i_{2}}\right|^{2}\right) \neq 0 \tag{32}
\end{equation*}
$$

If $i_{1}=i_{2}$, equations (26) reduces to only one equation for $c_{k i i, k i i}$:

$$
\begin{equation*}
\left(d_{2}^{i(k, i i)}+d_{1}^{i(k, i i)}\right) c_{k i, k i i}=c_{k i, k i} \tag{33}
\end{equation*}
$$

where

$$
\begin{align*}
& d_{2}^{i(k, i i)}=1-\left|q_{i k} q_{i i}\right|^{2} \tag{34}\\
& d_{1}^{i(k, i i)}=q_{i i}\left(1-\left|q_{i k}\right|^{2}\right) .
\end{align*}
$$

Then

$$
\begin{equation*}
c_{k i i, k i i}=\frac{1}{\left(1+q_{i i}\right)\left(1-q_{i i}\left|q_{i k}\right|^{2}\right)\left(1-\left|q_{i k}\right|^{2}\right)}=\mathcal{A}_{k i i, k i i}^{-1} \tag{35}
\end{equation*}
$$

(iii) Case $n=3$

Here we give solutions of equations (26) when $q_{i j}=q, \forall i, j \in S, q \in \boldsymbol{R}$.
If $i_{1} \neq i_{2} \neq i_{3} \neq i_{1}$. they are

$$
\begin{align*}
& c_{k 123, k 123}=\frac{\left(1+q^{2}\right)^{2}\left(1+q^{4}\right)-q^{4}}{\Delta_{4}}=\mathcal{A}_{k 123, k 123}^{-1} \\
& c_{k 231, k 123}=c_{k 312, k 123}=-\frac{q^{4}}{\Delta_{4}}=\mathcal{A}_{k 123, k 231}^{-1} \\
& c_{k 132, k 123}=-\frac{q\left(1+q^{2}\right)\left(1+q^{4}\right)}{\Delta_{4}}=\mathcal{A}_{k 123, k 213}^{-1} \tag{36}\\
& c_{k 213, k 123}=-\frac{q\left(1+q^{6}\right)}{\Delta_{4}}=\mathcal{A}_{k 123, k 132}^{-1} \\
& c_{k 321, k 123}=\frac{q^{3}\left(1+q^{2}\right)}{\Delta_{4}}=\mathcal{A}_{k 123, k 321}^{-1} .
\end{align*}
$$

where

$$
\begin{equation*}
\Delta_{4}=\left(1-q^{2}\right)\left(1-q^{6}\right)\left(1-q^{12}\right) \tag{37}
\end{equation*}
$$

If two of the indices $i_{1} i_{2} i_{3}$ are equal and the third is different, equations (26) reduce to three equations for $c_{k i j, k i i j}, c_{k i j i, k i i j}$ and $c_{k j i, k i i j}$. If the indices $i_{1} i_{2} i_{3}$ are equal, there is only one equation for $c_{k i l i, k i i l}$.

For general $n \in N$ and $q_{i j}=q, \forall i, j \in S, q \in R$, the coefficients $d_{j}^{l(k ; n)}$ are

$$
d_{j}^{l(k ; n\}}=q^{n-j}\left(1-q^{2 j}\right) .
$$

The following symmetry relation can be proved:

$$
\begin{equation*}
c_{k \pi \cdot\left(l_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}}=c_{k \pi \pi^{-1} \cdot\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}} \tag{38}
\end{equation*}
$$

and the following sum rule holds:

$$
\begin{equation*}
\sum_{\pi \in S_{n} / S t} c_{k \pi \cdot\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}}=\frac{(1-q)^{n+1}}{1-q^{n+1}} \prod_{\alpha=1}^{n} \frac{1}{\left(1-q^{\alpha}\right)^{2}}=c_{k i} \underbrace{i \cdots i}_{n}, \underbrace{i \cdots i}_{n} \tag{39}
\end{equation*}
$$

5. Concluding remarks

We conclude with a few remarks.
(a) When $\left|q_{i j}\right|<1, \forall i, j \in S$, our general construction leads to the recurrent relations (26). They have a unique non-trivial solution owing to the fact that the number operator N_{k} exists and that the states $\left.a_{\pi\left(t_{1}\right)}^{\dagger} \cdots a_{\pi\left(i_{n}\right)}^{\dagger} \mid 0\right)$ are linearly independent for different permutations $\pi \in S_{n}$ [4].

If $\left|q_{i j}\right|=1$ for some $i, j \in S$, equations (26) have no solution, i.e. the determinant of the system vanishes. For example, consider equation (31) when $\left|q_{i_{1} i_{2}}\right|=1$ or $\left|q_{i k}\right|=1$. However, the number operator N_{k} still exists. The explanation is simple. We remind ourselves that the commutation relation between a_{i} and a_{j} appears when $\left|q_{i j}\right|=1$, namely, $\|\left(a_{i} a_{j}-q_{j i} a_{j} a_{i}\right)^{\dagger}|0\rangle \|^{2}=0$, $[4,7]$. Hence there is a reduction in the number of linearly independent states and our recurrent relations (26) are not valid in this case (solutions diverge). Nevertheless, in the limit when $\left|q_{i j}\right| \rightarrow 1$ and the determinant of the system (26) tends to zero, any matrix element of the operator

$$
\begin{equation*}
\sum_{\pi \in S_{n} / S t} c_{k \pi\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}}\left[Y_{k \pi \cdot\left(i_{1} \cdots i_{n}\right)}\right]^{\dagger} Y_{k\left(i_{1} \cdots i_{n}\right)} \tag{40}
\end{equation*}
$$

is finite. Moreover, in the limit when $\left|q_{i j}\right| \rightarrow 1$ for every pair of given indices k, i_{1}, \cdots, i_{n}, every matrix element of operator (40) tends to zero, and in this case we can omit all such operators (40) in expansion (25).

When $\left|q_{i j}\right|=1, \forall i, j \in S$, (anyonic-like oscillators), the commutation relations are $a_{i} a_{j}-q_{i j}^{*} a_{j} a_{i}=0, \forall i, j \in S$ and the number operator is simply $N_{k}=a_{k}^{\dagger} a_{k}[4,7]$.
(b) Analysing the solutions of equations (26), we have found [4] that the coefficients $c_{k \pi} \cdot\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}$ can be written as

$$
\begin{equation*}
c_{k \pi \cdot\left(i_{1} \cdots i_{n}\right), k i_{1} \cdots i_{n}}=\mathcal{A}_{k, i_{1} \cdots i_{n} ; k \sigma\left(i_{1} \cdots i_{n}\right)}^{-1} \tag{41}
\end{equation*}
$$

where \mathcal{A} is defined by equation (5) and $\pi, \sigma \in S_{n} / S t$. Note that \mathcal{A} and \mathcal{A}^{-1} are Hermitian matrices. Using the general structure of equations (1), (2), (5), one can show that the following relations hold:

$$
\begin{equation*}
\mathcal{A}_{k, i d ; k, \pi}^{-1}\left(k, i_{1}, \cdots, i_{n}\right)=\sum_{\sigma \in \mathcal{S}_{n}} \mathcal{A}_{k, i d ; k, \sigma}^{-1}\left(k, i_{1}, \cdots, i_{n}\right) \tag{42}
\end{equation*}
$$

where $\pi \in S_{n} / S t$ and sum runs over $s_{1}!\cdots s_{a}!$, $\left(\sum_{\alpha=1}^{a} s_{\alpha}=n\right)$ different permutations σ, $\sigma \in S_{n}$, which satisfy $\sigma\left(i_{1} \cdots i_{n}\right)=\pi\left(i_{1} \cdots i_{n}\right)$.

We conjecture that formula (41) is true in all orders and represents a general solution of equation (26) [4], when $\left|q_{i j}\right|<1, \forall i, j \in S$.
(c) We shall summarize the main results of this paper. We have proved the existence of the number operator N_{k} in the general quon algebra. We have presented a general construction of N_{k} when $\left|q_{i j}\right|<1, \forall i, j \in S$. We have proved a new general simple structure of N_{k}, equation (25), and constructed general recurrent relations for the corresponding coefficients, equations (26). When $q_{i j}=q,-1<q<1$, our general construction differs from that proposed by Zagier [8], Stanciu [9] and Møller [10].

Our results are in agreement with those of [8-10]. For example, the result of Zagier can be written as
$N_{k}=a_{k}^{\dagger} a_{k}+\frac{1}{1-q^{2}} \sum_{l}\left[Y_{k, i}\right]^{\dagger} Y_{k, i}+\frac{1}{\left(1-q^{2}\right)\left(1-q^{6}\right)} \sum_{i_{1}, i_{2}}\left[\left(1+q^{2}\right) Y_{k, i_{1} i_{2}}-q Y_{k, i_{2} i_{1}}\right]^{\dagger} Y_{k, i_{1} i_{2}}$.
(d) Finally, let us consider non-relativistic field theory of quons [2]. To construct the operators for the energy, momentum, angular momentum etc in terms of the annihilation and creation operators, one needs to construct a set of number operators, N_{i}, which obey the usual commutation relations (7). Then the energy operator, for example, is

$$
\begin{equation*}
E=\sum_{i} \epsilon_{t} N_{i} \tag{44}
\end{equation*}
$$

where ϵ_{i} is the single particle energy.
Transition operators $N_{i j}$

$$
\begin{equation*}
\left[N_{i j}, a_{k}\right]=-a_{i} \delta_{j k} \tag{45}
\end{equation*}
$$

can be constructed in the same way as we did for the number operators. Transition operators for infinite statistics are discussed in [2].

Usual number operators N_{i} (7) exist if there are no relations between $a_{i}^{m}, a_{j}^{n}, m, n \in N$. For general quon algebra, $\left|q_{i j}\right|<1, \forall i, j \in S$, there are no such relations and hence number operators N_{i} exist.

Let us denote a quon field in position space by $\psi(x)$. To write a Hamiltonian for twobody interactions of identical particles which violate (para)Fermi, (para)Bose and anyonic statistics (by a possible small amount), it is convenient to work in position space. Then the
analogue of the transition operator is the off-diagonal one-body operator $\rho_{1}\left(\boldsymbol{x} ; \boldsymbol{x}^{\prime}\right)$ which obeys the relations

$$
\begin{align*}
& {\left[\rho_{1}\left(x ; x^{\prime}\right), \psi^{\dagger}(y)\right]=\delta\left(x^{\prime}-y\right) \psi^{\dagger}(x)} \tag{46}\\
& \rho_{1}(x ; y)|0\rangle=0
\end{align*}
$$

The operator ρ_{1} suffices for the one-body operators, such as the kinetic energy; however, for two-body operators relevant to potential interactions one needs an analogous operator $\rho_{2}\left(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ which obeys [2]:
$\left[\rho_{2}\left(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right), \psi^{\dagger}(\boldsymbol{z})\right]=\delta\left(\boldsymbol{x}^{\prime}-\boldsymbol{z}\right) \psi^{\dagger}(\boldsymbol{x}) \rho_{1}\left(\boldsymbol{y} ; \boldsymbol{y}^{\prime}\right)+\delta\left(\boldsymbol{y}^{\prime}-\boldsymbol{z}\right) \psi^{\dagger}(\boldsymbol{y}) \rho_{1}\left(\boldsymbol{x} ; \boldsymbol{x}^{\prime}\right)$.
Our method for constructing number operators N_{r} can be extended to $\rho_{1}\left(\boldsymbol{x} ; \boldsymbol{x}^{\prime}\right)$ and $\rho_{2}\left(\boldsymbol{x}, \boldsymbol{y} ; \boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)$ operators as well.

Acknowledgments

We thank M Milekovic and D Svrtan for useful discussions and for reading the manuscript. This work was supported by the Scientific Fund of the Republic of Croatia.

References

[1] Greenberg O W 1990 Phys. Rev. Lett. 64705
[2] Greenberg O W 1991 Phys. Rev. D 434111
Greenberg O W 1992 Physica 180419
Greenberg OW 1993 Quons, an interpolation between boson and Fermi oscillators University of Maryland Preprint no 93-097
[3] Mohapatra R N 1990 Phys. Lett. 242B 107
Greenberg O W, Greenberger D M and Greenbergest T V 1993 (Para)Bosons, (Para)Fermions, quons and other beasts in the menagerie of particle statistics University of Maryland Preprint no 93-203
[4] Meljanac S and Perica A 1993 Bose, Fermi, para-Bose, para-Fermi, and anyonic statistics: the R-matrix approach to associative algebras Preprint RBI-TH-10/93
[5] Bardek V, Doresic M and Meljanac S 1993 Anyons as quon particles (to appear in Phys. Rev. D)
Bardek V, Doresic M and Meljanac S 1993 Example of q-deformed field theory (to appear in Int. J. Mod. Phys.)
[6] Goodison J W and Toms D J 1993 Phys. Rev. Lett. 713240
[7] Bardek V, Meljanac S and Perica A 1994 Generalized statistics and dynamics in curved spacetime Preprint RBI-TH -1/94
[8] Zagier D 1992 Commun. Math. Phys. 147199
[9] Stanciu S 1992 Commun. Math. Phys. 147211
[10] Møller J S 1993 J. Phys. A: Math. Gen. 264643

